Powered by RND
PodcastsTechnologyLearning Bayesian Statistics

Learning Bayesian Statistics

Alexandre Andorra
Learning Bayesian Statistics
Latest episode

Available Episodes

5 of 150
  • #132 Bayesian Cognition and the Future of Human-AI Interaction, with Tom Griffiths
    Proudly sponsored by PyMC Labs, the Bayesian Consultancy. Book a call, or get in touch!Check out Hugo’s latest episode with Fei-Fei Li, on How Human-Centered AI Actually Gets BuiltIntro to Bayes Course (first 2 lessons free)Advanced Regression Course (first 2 lessons free)Our theme music is « Good Bayesian », by Baba Brinkman (feat MC Lars and Mega Ran). Check out his awesome work!Visit our Patreon page to unlock exclusive Bayesian swag ;)Takeaways:Computational cognitive science seeks to understand intelligence mathematically.Bayesian statistics is crucial for understanding human cognition.Inductive biases help explain how humans learn from limited data.Eliciting prior distributions can reveal implicit beliefs.The wisdom of individuals can provide richer insights than averaging group responses.Generative AI can mimic human cognitive processes.Human intelligence is shaped by constraints of data, computation, and communication.AI systems operate under different constraints than human cognition. Human intelligence differs fundamentally from machine intelligence.Generative AI can complement and enhance human learning.AI systems currently lack intrinsic human compatibility.Language training in AI helps align its understanding with human perspectives.Reinforcement learning from human feedback can lead to misalignment of AI goals.Representational alignment can improve AI's understanding of human concepts.AI can help humans make better decisions by providing relevant information.Research should focus on solving problems rather than just methods.Chapters:00:00 Understanding Computational Cognitive Science13:52 Bayesian Models and Human Cognition29:50 Eliciting Implicit Prior Distributions38:07 The Relationship Between Human and AI Intelligence45:15 Aligning Human and Machine Preferences50:26 Innovations in AI and Human Interaction55:35 Resource Rationality in Decision Making01:00:07 Language Learning in AI Models
    --------  
    1:30:15
  • BITESIZE | Hacking Bayesian Models for Better Performance, with Luke Bornn
    Today’s clip is from episode 131 of the podcast, with Luke Bornn.Luke and Alex discuss the application of generative models in sports analytics. They emphasize the importance of Bayesian modeling to account for uncertainty and contextual variations in player data. The discussion also covers the challenges of balancing model complexity with computational efficiency, the innovative ways to hack Bayesian models for improved performance, and the significance of understanding model fitting and discretization in statistical modeling.Get the full discussion here.Intro to Bayes Course (first 2 lessons free)Advanced Regression Course (first 2 lessons free)Our theme music is « Good Bayesian », by Baba Brinkman (feat MC Lars and Mega Ran). Check out his awesome work!Visit our Patreon page to unlock exclusive Bayesian swag ;)TranscriptThis is an automatic transcript and may therefore contain errors. Please get in touch if you're willing to correct them.
    --------  
    13:35
  • #131 Decision-Making Under High Uncertainty, with Luke Bornn
    Proudly sponsored by PyMC Labs, the Bayesian Consultancy. Book a call, or get in touch!Intro to Bayes Course (first 2 lessons free)Advanced Regression Course (first 2 lessons free)Our theme music is « Good Bayesian », by Baba Brinkman (feat MC Lars and Mega Ran). Check out his awesome work!Visit our Patreon page to unlock exclusive Bayesian swag ;)Thank you to my Patrons for making this episode possible!Yusuke Saito, Avi Bryant, Ero Carrera, Giuliano Cruz, Tim Gasser, James Wade, Tradd Salvo, William Benton, James Ahloy, Robin Taylor,, Chad Scherrer, Zwelithini Tunyiswa, Bertrand Wilden, James Thompson, Stephen Oates, Gian Luca Di Tanna, Jack Wells, Matthew Maldonado, Ian Costley, Ally Salim, Larry Gill, Ian Moran, Paul Oreto, Colin Caprani, Colin Carroll, Nathaniel Burbank, Michael Osthege, Rémi Louf, Clive Edelsten, Henri Wallen, Hugo Botha, Vinh Nguyen, Marcin Elantkowski, Adam C. Smith, Will Kurt, Andrew Moskowitz, Hector Munoz, Marco Gorelli, Simon Kessell, Bradley Rode, Patrick Kelley, Rick Anderson, Casper de Bruin, Philippe Labonde, Michael Hankin, Cameron Smith, Tomáš Frýda, Ryan Wesslen, Andreas Netti, Riley King, Yoshiyuki Hamajima, Sven De Maeyer, Michael DeCrescenzo, Fergal M, Mason Yahr, Naoya Kanai, Steven Rowland, Aubrey Clayton, Jeannine Sue, Omri Har Shemesh, Scott Anthony Robson, Robert Yolken, Or Duek, Pavel Dusek, Paul Cox, Andreas Kröpelin, Raphaël R, Nicolas Rode, Gabriel Stechschulte, Arkady, Kurt TeKolste, Gergely Juhasz, Marcus Nölke, Maggi Mackintosh, Grant Pezzolesi, Avram Aelony, Joshua Meehl, Javier Sabio, Kristian Higgins, Alex Jones, Gregorio Aguilar, Matt Rosinski, Bart Trudeau, Luis Fonseca, Dante Gates, Matt Niccolls, Maksim Kuznecov, Michael Thomas, Luke Gorrie, Cory Kiser, Julio, Edvin Saveljev, Frederick Ayala, Jeffrey Powell, Gal Kampel, Adan Romero, Will Geary, Blake Walters, Jonathan Morgan, Francesco Madrisotti, Ivy Huang, Gary Clarke, Robert Flannery, Rasmus Hindström, Stefan, Corey Abshire, Mike Loncaric, David McCormick, Ronald Legere, Sergio Dolia, Michael Cao, Yiğit Aşık and Suyog Chandramouli.Takeaways:Player tracking data revolutionized sports analytics.Decision-making in sports involves managing uncertainty and budget constraints.Luke emphasizes the importance of portfolio optimization in team management.Clubs with high budgets can afford inefficiencies in player acquisition.Statistical methods provide a probabilistic approach to player value.Removing human bias is crucial in sports decision-making.Understanding player performance distributions aids in contract decisions.The goal is to maximize performance value per dollar spent.Model validation in sports requires focusing on edge cases.
    --------  
    1:31:46
  • BITESIZE | Real-World Applications of Models in Public Health, with Adam Kucharski
    Today’s clip is from episode 130 of the podcast, with epidemiological modeler Adam Kucharski.This conversation explores the critical role of patient modeling during the COVID-19 pandemic, highlighting how these models informed public health decisions and the relationship between modeling and policy. The discussion emphasizes the need for improved communication and understanding of data among the public and policymakers.Get the full discussion here.Intro to Bayes Course (first 2 lessons free)Advanced Regression Course (first 2 lessons free)Our theme music is « Good Bayesian », by Baba Brinkman (feat MC Lars and Mega Ran). Check out his awesome work!Visit our Patreon page to unlock exclusive Bayesian swag ;)TranscriptThis is an automatic transcript and may therefore contain errors. Please get in touch if you're willing to correct them.
    --------  
    16:26
  • #130 The Real-World Impact of Epidemiological Models, with Adam Kucharski
    Proudly sponsored by PyMC Labs, the Bayesian Consultancy. Book a call, or get in touch!Intro to Bayes Course (first 2 lessons free)Advanced Regression Course (first 2 lessons free)Our theme music is « Good Bayesian », by Baba Brinkman (feat MC Lars and Mega Ran). Check out his awesome work!Visit our Patreon page to unlock exclusive Bayesian swag ;)Thank you to my Patrons for making this episode possible!Yusuke Saito, Avi Bryant, Ero Carrera, Giuliano Cruz, Tim Gasser, James Wade, Tradd Salvo, William Benton, James Ahloy, Robin Taylor,, Chad Scherrer, Zwelithini Tunyiswa, Bertrand Wilden, James Thompson, Stephen Oates, Gian Luca Di Tanna, Jack Wells, Matthew Maldonado, Ian Costley, Ally Salim, Larry Gill, Ian Moran, Paul Oreto, Colin Caprani, Colin Carroll, Nathaniel Burbank, Michael Osthege, Rémi Louf, Clive Edelsten, Henri Wallen, Hugo Botha, Vinh Nguyen, Marcin Elantkowski, Adam C. Smith, Will Kurt, Andrew Moskowitz, Hector Munoz, Marco Gorelli, Simon Kessell, Bradley Rode, Patrick Kelley, Rick Anderson, Casper de Bruin, Philippe Labonde, Michael Hankin, Cameron Smith, Tomáš Frýda, Ryan Wesslen, Andreas Netti, Riley King, Yoshiyuki Hamajima, Sven De Maeyer, Michael DeCrescenzo, Fergal M, Mason Yahr, Naoya Kanai, Steven Rowland, Aubrey Clayton, Jeannine Sue, Omri Har Shemesh, Scott Anthony Robson, Robert Yolken, Or Duek, Pavel Dusek, Paul Cox, Andreas Kröpelin, Raphaël R, Nicolas Rode, Gabriel Stechschulte, Arkady, Kurt TeKolste, Gergely Juhasz, Marcus Nölke, Maggi Mackintosh, Grant Pezzolesi, Avram Aelony, Joshua Meehl, Javier Sabio, Kristian Higgins, Alex Jones, Gregorio Aguilar, Matt Rosinski, Bart Trudeau, Luis Fonseca, Dante Gates, Matt Niccolls, Maksim Kuznecov, Michael Thomas, Luke Gorrie, Cory Kiser, Julio, Edvin Saveljev, Frederick Ayala, Jeffrey Powell, Gal Kampel, Adan Romero, Will Geary, Blake Walters, Jonathan Morgan, Francesco Madrisotti, Ivy Huang, Gary Clarke, Robert Flannery, Rasmus Hindström, Stefan, Corey Abshire, Mike Loncaric, David McCormick, Ronald Legere, Sergio Dolia, Michael Cao, Yiğit Aşık and Suyog Chandramouli.Takeaways:Epidemiology requires a blend of mathematical and statistical understanding.Models are essential for informing public health decisions during epidemics.The COVID-19 pandemic highlighted the importance of rapid modeling.Misconceptions about data can lead to misunderstandings in public health.Effective communication is crucial for conveying complex epidemiological concepts.Epidemic thinking can be applied to various fields, including marketing and finance.Public health policies should be informed by robust modeling and data analysis.Automation can help streamline data analysis in epidemic response.Understanding the limitations of models...
    --------  
    1:09:05

More Technology podcasts

About Learning Bayesian Statistics

Are you a researcher or data scientist / analyst / ninja? Do you want to learn Bayesian inference, stay up to date or simply want to understand what Bayesian inference is? Then this podcast is for you! You'll hear from researchers and practitioners of all fields about how they use Bayesian statistics, and how in turn YOU can apply these methods in your modeling workflow. When I started learning Bayesian methods, I really wished there were a podcast out there that could introduce me to the methods, the projects and the people who make all that possible. So I created "Learning Bayesian Statistics", where you'll get to hear how Bayesian statistics are used to detect black matter in outer space, forecast elections or understand how diseases spread and can ultimately be stopped. But this show is not only about successes -- it's also about failures, because that's how we learn best. So you'll often hear the guests talking about what *didn't* work in their projects, why, and how they overcame these challenges. Because, in the end, we're all lifelong learners! My name is Alex Andorra by the way, and I live in Estonia. By day, I'm a data scientist and modeler at the https://www.pymc-labs.io/ (PyMC Labs) consultancy. By night, I don't (yet) fight crime, but I'm an open-source enthusiast and core contributor to the python packages https://docs.pymc.io/ (PyMC) and https://arviz-devs.github.io/arviz/ (ArviZ). I also love https://www.pollsposition.com/ (election forecasting) and, most importantly, Nutella. But I don't like talking about it – I prefer eating it. So, whether you want to learn Bayesian statistics or hear about the latest libraries, books and applications, this podcast is for you -- just subscribe! You can also support the show and https://www.patreon.com/learnbayesstats (unlock exclusive Bayesian swag on Patreon)!
Podcast website

Listen to Learning Bayesian Statistics, Dwarkesh Podcast and many other podcasts from around the world with the radio.net app

Get the free radio.net app

  • Stations and podcasts to bookmark
  • Stream via Wi-Fi or Bluetooth
  • Supports Carplay & Android Auto
  • Many other app features
Social
v7.18.2 | © 2007-2025 radio.de GmbH
Generated: 5/20/2025 - 8:23:20 PM