Powered by RND
PodcastsTechnologyLatent Space: The AI Engineer Podcast

Latent Space: The AI Engineer Podcast

swyx + Alessio
Latent Space: The AI Engineer Podcast
Latest episode

Available Episodes

5 of 129
  • Claude Code: Anthropic's CLI Agent
    More info: https://docs.anthropic.com/en/docs/claude-code/overview The AI coding wars have now split across four battlegrounds: 1. AI IDEs: with two leading startups in Windsurf ($3B acq. by OpenAI) and Cursor ($9B valuation) and a sea of competition behind them (like Cline, Github Copilot, etc). 2. Vibe coding platforms: Bolt.new, Lovable, v0, etc. all experiencing fast growth and getting to the tens of millions of revenue in months. 3. The teammate agents: Devin, Cosine, etc. Simply give them a task, and they will get back to you with a full PR (with mixed results) 4. The cli-based agents: after Aider’s initial success, we are now seeing many other alternatives including two from the main labs: OpenAI Codex and Claude Code. The main draw is that 1) they are composable 2) they are pay as you go based on tokens used. Since we covered all three of the first categories, today’s guests are Boris and Cat, the lead engineer and PM for Claude Code. If you only take one thing away from this episode, it’s this piece from Boris: Claude Code is not a product as much as it’s a Unix utility. This fits very well with Anthropic’s product principle: “do the simple thing first.” Whether it’s the memory implementation (a markdown file that gets auto-loaded) or the approach to prompt summarization (just ask Claude to summarize), they always pick the smallest building blocks that are useful, understandable, and extensible. Even major features like planning (“/think”) and memory (#tags in markdown) fit the same idea of having text I/O as the core interface. This is very similar to the original UNIX design philosophy: Claude Code is also the most direct way to consume Sonnet for coding, rather than going through all the hidden prompting and optimization than the other products do. You will feel that right away, as the average spend per user is $6/day on Claude Code compared to $20/mo for Cursor, for example. Apparently, there are some engineers inside of Anthropic that have spent >$1,000 in one day! If you’re building AI developer tools, there’s also a lot of alpha on how to design a cli tool, interactive vs non-interactive modes, and how to balance feature creation. Enjoy! Timestamps [00:00:00] Intro [00:01:59] Origins of Claude Code [00:04:32] Anthropic’s Product Philosophy [00:07:38] What should go into Claude Code? [00:09:26] Claude.md and Memory Simplification [00:10:07] Claude Code vs Aider [00:11:23] Parallel Workflows and Unix Utility Philosophy [00:12:51] Cost considerations and pricing model [00:14:51] Key Features Shipped Since Launch [00:16:28] Claude Code writes 80% of Claude Code [00:18:01] Custom Slash Commands and MCP Integration [00:21:08] Terminal UX and Technical Stack [00:27:11] Code Review and Semantic Linting [00:28:33] Non-Interactive Mode and Automation [00:36:09] Engineering Productivity Metrics [00:37:47] Balancing Feature Creation and Maintenance [00:41:59] Memory and the Future of Context [00:50:10] Sandboxing, Branching, and Agent Planning [01:01:43] Future roadmap [01:11:00] Why Anthropic Excels at Developer Tools
    --------  
    1:17:21
  • ⚡️The Rise and Fall of the Vector DB Category
    Note from your hosts: we were off this week for ICLR and RSA! This week we’re bringing you one of the top episodes from our lightning podcast series, the shorter format, Youtube-only side podcast we do for breaking news and faster turnaround. Please support our work on YouTube! https://www.youtube.com/playlist?list=PLWEAb1SXhjlc5qgVK4NgehdCzMYCwZtiB The explosion of embedding-based applications created a new challenge: efficiently storing, indexing, and searching these high-dimensional vectors at scale. This gap gave rise to the vector database category, with companies like Pinecone leading the charge in 2022-2023 by defining specialized infrastructure for vector operations. The category saw explosive growth following ChatGPT's launch in late 2022, as developers rushed to build AI applications using Retrieval-Augmented Generation (RAG). This surge was partly driven by a widespread misconception that embedding-based similarity search was the only viable method for retrieving context for LLMs!!! The resulting "vector database gold rush" saw massive investment and attention directed toward vector search infrastructure, even though traditional information retrieval techniques remained equally valuable for many RAG applications. https://x.com/jobergum/status/1872923872007217309 Chapters 00:00 Introduction to Trondheim and Background 03:03 The Rise and Fall of Vector Databases 06:08 Convergence of Search Technologies 09:04 Embeddings and Their Importance 12:03 Building Effective Search Systems 15:00 RAG Applications and Recommendations 17:55 The Role of Knowledge Graphs 20:49 Future of Embedding Models and Innovations
    --------  
    27:16
  • Why Every Agent needs Open Source Cloud Sandboxes
    Vasek Mlejnsky from E2B joins us today to talk about sandboxes for AI agents. In the last 2 years, E2B has grown from a handful of developers building on it to being used by ~50% of the Fortune 500 and generating millions of sandboxes each week for their customers. As the “death of chat completions” approaches, LLMs workflows and agents are relying more and more on tool usage and multi-modality. The most common use cases for their sandboxes: - Run data analysis and charting (like Perplexity) - Execute arbitrary code generated by the model (like Manus does) - Running evals on code generation (see LMArena Web) - Doing reinforcement learning for code capabilities (like HuggingFace) Timestamps: 00:00:00 Introductions 00:00:37 Origin of DevBook -> E2B 00:02:35 Early Experiments with GPT-3.5 and Building AI Agents 00:05:19 Building an Agent Cloud 00:07:27 Challenges of Building with Early LLMs 00:10:35 E2B Use Cases 00:13:52 E2B Growth vs Models Capabilities 00:15:03 The LLM Operating System (LLMOS) Landscape 00:20:12 Breakdown of JavaScript vs Python Usage on E2B 00:21:50 AI VMs vs Traditional Cloud 00:26:28 Technical Specifications of E2B Sandboxes 00:29:43 Usage-based billing infrastructure 00:34:08 Pricing AI on Value Delivered vs Token Usage 00:36:24 Forking, Checkpoints, and Parallel Execution in Sandboxes 00:39:18 Future Plans for Toolkit and Higher-Level Agent Frameworks 00:42:35 Limitations of Chat-Based Interfaces and the Future of Agents 00:44:00 MCPs and Remote Agent Capabilities 00:49:22 LLMs.txt, scrapers, and bad AI bots 00:53:00 Manus and Computer Use on E2B 00:55:03 E2B for RL with Hugging Face 00:56:58 E2B for Agent Evaluation on LMArena 00:58:12 Long-Term Vision: E2B as Full Lifecycle Infrastructure for LLMs 01:00:45 Future Plans for Hosting and Deployment of LLM-Generated Apps 01:01:15 Why E2B Moved to San Francisco 01:05:49 Open Roles and Hiring Plans at E2B
    --------  
    1:06:38
  • ⚡️GPT 4.1: The New OpenAI Workhorse
    We’ll keep this brief because we’re on a tight turnaround: GPT 4.1, previously known as the Quasar and Optimus models, is now live as the natural update for 4o/4o-mini (and the research preview of GPT 4.5). Though it is a general purpose model family, the headline features are: Coding abilities (o1-level SWEBench and SWELancer, but ok Aider) Instruction Following (with a very notable prompting guide) Long Context up to 1m tokens (with new MRCR and Graphwalk benchmarks) Vision (simply o1 level) Cheaper Pricing (cheaper than 4o, greatly improved prompt caching savings) We caught up with returning guest Michelle Pokrass and Josh McGrath to get more detail on each! Chapters 00:00:00 Introduction and Guest Welcome 00:00:57 GPC 4.1 Launch Overview 00:01:54 Developer Feedback and Model Names 00:02:53 Model Naming and Starry Themes 00:03:49 Confusion Over GPC 4.1 vs 4.5 00:04:47 Distillation and Model Improvements 00:05:45 Omnimodel Architecture and Future Plans 00:06:43 Core Capabilities of GPC 4.1 00:07:40 Training Techniques and Long Context 00:08:37 Challenges in Long Context Reasoning 00:09:34 Context Utilization in Models 00:10:31 Graph Walks and Model Evaluation 00:11:31 Real Life Applications of Graph Tasks 00:12:30 Multi-Hop Reasoning Benchmarks 00:13:30 Agentic Workflows and Backtracking 00:14:28 Graph Traversals for Agent Planning 00:15:24 Context Usage in API and Memory Systems 00:16:21 Model Performance in Long Context Tasks 00:17:17 Instruction Following and Real World Data 00:18:12 Challenges in Grading Instructions 00:19:09 Instruction Following Techniques 00:20:09 Prompting Techniques and Model Responses 00:21:05 Agentic Workflows and Model Persistence 00:22:01 Balancing Persistence and User Control 00:22:56 Evaluations on Model Edits and Persistence 00:23:55 XML vs JSON in Prompting 00:24:50 Instruction Placement in Context 00:25:49 Optimizing for Prompt Caching 00:26:49 Chain of Thought and Reasoning Models 00:27:46 Choosing the Right Model for Your Task 00:28:46 Coding Capabilities of GPC 4.1 00:29:41 Model Performance in Coding Tasks 00:30:39 Understanding Coding Model Differences 00:31:36 Using Smaller Models for Coding 00:32:33 Future of Coding in OpenAI 00:33:28 Internal Use and Success Stories 00:34:26 Vision and Multi-Modal Capabilities 00:35:25 Screen vs Embodied Vision 00:36:22 Vision Benchmarks and Model Improvements 00:37:19 Model Deprecation and GPU Usage 00:38:13 Fine-Tuning and Preference Steering 00:39:12 Upcoming Reasoning Models 00:40:10 Creative Writing and Model Humor 00:41:07 Feedback and Developer Community 00:42:03 Pricing and Blended Model Costs 00:44:02 Conclusion and Wrap-Up
    --------  
    41:52
  • SF Compute: Commoditizing Compute
    Evan Conrad, co-founder of SF Compute, joined us to talk about how they started as an AI lab that avoided bankruptcy by selling GPU clusters, why CoreWeave financials look like a real estate business, and how GPUs are turning into a commodities market. Chapters: 00:00:05 - Introductions 00:00:12 - Introduction of guest Evan Conrad from SF Compute 00:00:12 - CoreWeave Business Model Discussion 00:05:37 - CoreWeave as a Real Estate Business 00:08:59 - Interest Rate Risk and GPU Market Strategy Framework 00:16:33 - Why Together and DigitalOcean will lose money on their clusters 00:20:37 - SF Compute's AI Lab Origins 00:25:49 - Utilization Rates and Benefits of SF Compute Market Model 00:30:00 - H100 GPU Glut, Supply Chain Issues, and Future Demand Forecast 00:34:00 - P2P GPU networks 00:36:50 - Customer stories 00:38:23 - VC-Provided GPU Clusters and Credit Risk Arbitrage 00:41:58 - Market Pricing Dynamics and Preemptible GPU Pricing Model 00:48:00 - Future Plans for Financialization? 00:52:59 - Cluster auditing and quality control 00:58:00 - Futures Contracts for GPUs 01:01:20 - Branding and Aesthetic Choices Behind SF Compute 01:06:30 - Lessons from Previous Startups 01:09:07 - Hiring at SF Compute Chapters 00:00:00 Introduction and Background 00:00:58 Analysis of GPU Business Models 00:01:53 Challenges with GPU Pricing 00:02:48 Revenue and Scaling with GPUs 00:03:46 Customer Sensitivity to GPU Pricing 00:04:44 Core Weave's Business Strategy 00:05:41 Core Weave's Market Perception 00:06:40 Hyperscalers and GPU Market Dynamics 00:07:37 Financial Strategies for GPU Sales 00:08:35 Interest Rates and GPU Market Risks 00:09:30 Optimal GPU Contract Strategies 00:10:27 Risks in GPU Market Contracts 00:11:25 Price Sensitivity and Market Competition 00:12:21 Market Dynamics and GPU Contracts 00:13:18 Hyperscalers and GPU Market Strategies 00:14:15 Nvidia and Market Competition 00:15:12 Microsoft's Role in GPU Market 00:16:10 Challenges in GPU Market Dynamics 00:17:07 Economic Realities of the GPU Market 00:18:03 Real Estate Model for GPU Clouds 00:18:59 Price Sensitivity and Chip Design 00:19:55 SF Compute's Beginnings and Challenges 00:20:54 Navigating the GPU Market 00:21:54 Pivoting to a GPU Cloud Provider 00:22:53 Building a GPU Market 00:23:52 SF Compute as a GPU Marketplace 00:24:49 Market Liquidity and GPU Pricing 00:25:47 Utilization Rates in GPU Markets 00:26:44 Brokerage and Market Flexibility 00:27:42 H100 Glut and Market Cycles 00:28:40 Supply Chain Challenges and GPU Glut 00:29:35 Future Predictions for the GPU Market 00:30:33 Speculations on Test Time Inference 00:31:29 Market Demand and Test Time Inference 00:32:26 Open Source vs. Closed AI Demand 00:33:24 Future of Inference Demand 00:34:24 Peer-to-Peer GPU Markets 00:35:17 Decentralized GPU Market Skepticism 00:36:15 Redesigning Architectures for New Markets 00:37:14 Supporting Grad Students and Startups 00:38:11 Successful Startups Using SF Compute 00:39:11 VCs and GPU Infrastructure 00:40:09 VCs as GPU Credit Transformators 00:41:06 Market Timing and GPU Infrastructure 00:42:02 Understanding GPU Pricing Dynamics 00:43:01 Market Pricing and Preemptible Compute 00:43:55 Price Volatility and Market Optimization 00:44:52 Customizing Compute Contracts 00:45:50 Creating Flexible Compute Guarantees 00:46:45 Financialization of GPU Markets 00:47:44 Building a Spot Market for GPUs 00:48:40 Auditing and Standardizing Clusters 00:49:40 Ensuring Cluster Reliability 00:50:36 Active Monitoring and Refunds 00:51:33 Automating Customer Refunds 00:52:33 Challenges in Cluster Maintenance 00:53:29 Remote Cluster Management 00:54:29 Standardizing Compute Contracts 00:55:28 Unified Infrastructure for Clusters 00:56:24 Creating a Commodity Market for GPUs 00:57:22 Futures Market and Risk Management 00:58:18 Reducing Risk with GPU Futures 00:59:14 Stabilizing the GPU Market 01:00:10 SF Compute's Anti-Hype Approach 01:01:07 Calm Branding and Expectations 01:02:07 Promoting San Francisco's Beauty 01:03:03 Design Philosophy at SF Compute 01:04:02 Artistic Influence on Branding 01:05:00 Past Projects and Burnout 01:05:59 Challenges in Building an Email Client 01:06:57 Persistence and Iteration in Startups 01:07:57 Email Market Challenges 01:08:53 SF Compute Job Opportunities 01:09:53 Hiring for Systems Engineering 01:10:50 Financial Systems Engineering Role 01:11:50 Conclusion and Farewell
    --------  
    1:12:01

More Technology podcasts

About Latent Space: The AI Engineer Podcast

The podcast by and for AI Engineers! In 2024, over 2 million readers and listeners came to Latent Space to hear about news, papers and interviews in Software 3.0. We cover Foundation Models changing every domain in Code Generation, Multimodality, AI Agents, GPU Infra and more, directly from the founders, builders, and thinkers involved in pushing the cutting edge. Striving to give you both the definitive take on the Current Thing down to the first introduction to the tech you'll be using in the next 3 months! We break news and exclusive interviews from OpenAI, Anthropic, Gemini, Meta (Soumith Chintala), Sierra (Bret Taylor), tiny (George Hotz), Databricks/MosaicML (Jon Frankle), Modular (Chris Lattner), Answer.ai (Jeremy Howard), et al. Full show notes always on https://latent.space
Podcast website

Listen to Latent Space: The AI Engineer Podcast, Hard Fork and many other podcasts from around the world with the radio.net app

Get the free radio.net app

  • Stations and podcasts to bookmark
  • Stream via Wi-Fi or Bluetooth
  • Supports Carplay & Android Auto
  • Many other app features
Social
v7.17.1 | © 2007-2025 radio.de GmbH
Generated: 5/9/2025 - 11:42:21 AM